The Ethical Skeptic

Challenging Pseudo-Skepticism, Institutional Propaganda and Cultivated Ignorance

Torfuscation – Gaming Study Design to Effect an Outcome

As important as is the mode of inference one employs commensurate with study completion, is the design of the study itself. Before one begins to attempt to reduce and analyze a body of observational resource, the ethical scientist must first select the study type and design that will afford them the greatest draw in terms of probative potential. The intricacies of this process present the poseur an opportunity to game outcomes of science through study design, type and PICO features, such that it produces outcomes which serve to further the political, hate or religious causes of their sponsors.

There are several ways to put on the appearance of conducting serious science, yet still effect outcomes which maintain alignment with the agency of your funders, sponsors, mentors or controlling authorities. Recent ethical evolution inside science, has highlighted the need for understanding that a researcher’s simply having calculated a p-value, applied an arrival distribution or bounded an estimate inside a confidence interval, does not necessarily mean that they have developed a sound basis from which to draw any quality inference. In similar philosophy, one can develop a study – and completely mislead the scientific community as to the nature of reality inside a given issue of contention or science.

We are all familiar with the trick of falsely calling a ‘survey of study abstracts’, or a meta-synthesis of best evidence, or an opinion piece summarizing a body of study from one person’s point of view – a ‘meta-analysis’. A meta-analysis combines congruent study designs and bodies of equivalent data, in order to improve the statistical power of the combined entailed analyses.1 The fake forms of meta-analysis do no such thing. A meta-analysis is a secondary or filtered systematic review which only bears leveraged strength in the instance wherein randomized controlled trials or longitudinal studies of the same species, are able to be combined in order to derive this higher statistical power. Every other flavor of such ‘blending of study’, does not accomplish such an objective. Such blending may, and this is important, actually serve to reduce the probative power of the systematic review itself. Nonetheless, you will find less-than-ethical scientists trying to push their opinion/summary articles upon the community as if they reflected through convenient misnomer, this ‘most rigorous form of study design’. One can find an example of this within the study: Taylor, Swerdfeger, Eslick; An evidence-based meta-analysis of case-control and cohort studies; Elsevier, 2014.2

This equivocal sleight-of-hand stands as merely one example of the games played within the agency-influenced domains of science. With regard to manipulating study design in order to effect a desired scientific outcome, there are several means of accomplishing this feat. Most notably the following methods, which are all called collectively, torfuscation. Torfuscation involves employing a less rigorous study type (lower rank on the Chart below), an ineffective study design, or a type of flawed methodical PICO-time analysis, which will serve most often to weaken the probative potential of a study which could ostensibly serve to produce an outcome which threatens its sponsors.


/philosophy : pseudoscience : study fraud : Saxon : ‘hide in the bog’/ : pseudoscience or obfuscation enacted through a Nelsonian knowledge masquerade of scientific protocol and study design. Inappropriate, manipulated or shallow study design crafted so as to obscure or avoid a targeted/disliked inference. A process, contended to be science, wherein one develops a conclusion through cataloging study artifice or observation noise as valid data. Invalid observations which can be parlayed into becoming evidence of absence or evidence of existence as one desires – by accepting only the appropriate hit or miss grouping one desires as basis to support an a priori preference, and as well avoid any further needed ex ante proof.  A refined form of praedicate evidentia or utile abstentia employed through using less rigorous or probative methods of study than are requisite under otherwise ethical science.  Exploitation of study noise generated through first level ‘big data’ or agency-influenced ‘meta-synthesis’, as the ‘evidence’ that no further or deeper study is therefore warranted – and moreover that research of the subject entailed is now socially embargoed.

Study design which exploits the weakness potential entailed inside the PICO-time Study Design Development Model3 (see Study to Inference Strength and Risk Chart below), through the manipulation of the study

P – patient, problem or population
I – intervention, indicator
C – comparison, control or comparator
O – outcome, or
time – time series

Which seeks to compromise the outcome or conclusion in terms of the study usage; more specifically: prevention, screening, diagnostic, treatment, quality of life, compassionate use, expanded access, superiority, non-inferiority and or equivalence.

Meta-Garbage, Deescalation and PICO-time Manipulation

One example of tampering with the PICO-time attributes of a study, would consist of the circumstance wherein only medical plan completed diagnostic data is used as the sample base for a retrospective observational cohort study’s ‘outcome’ data. Such data is highly likely to be incomplete or skewed in a non-probative direction, under a condition of linear induction (a weaker form of inference) and utile abstentia (a method of exclusion bias through furtive data-source selection). In similar fashion, if the average age of outcome diagnosis is 5.5 years, and the average slack time between diagnosis and first possible recording into a medical plan database is 4 to 18 months, then a constraining of the time-series involved inside a study examining that data, to 4.5 years, is an act of incompetent or malicious study design. But you will find both of these tricks to be common in studies wherein a potential outcome is threatening to a study’s sponsors; agents who hope to prove by modus absens shallow and linear inductive inference that the subject can be embargoed from then on. Just such a study can be found here: Madsen, Hviid; A Population-Based Study of Measles, Mumps, and Rubella Vaccination and Autism, 2002.4 A study may also be downgraded (lower on the chart below), and purposely forced to employ a lesser form of design probative strength (Levels 1 – 7); precisely because its sponsors suspect the possibility of a valid risk they do not want exposed. This is very similar to a downgrading in inference method called methodical deescalation – a common trick of professional pseudoscience. One may also notice that often, studies employing these three tricks are held as proprietary, concealed from the public during the critical study design phase. This is purposeful. This is oppression in the name of science. One may also notice that the ‘meta-analysis’ decried earlier in this article, cited this very study just mentioned as a ‘best evidence study’ inside its systematic review. If you meta-study garbage, you will produce meta-garbage as well (see Secondary Study in the Chart below).

The following is The Ethical Skeptic’s chart indexing study design against mode of inference, strength and its risk in torfuscation. It is a handy tool for helping spot torfuscation of the three example types elicited above, and more. The study types are ranked from top to bottom in terms of Level in probative strength (1 – 7), and as well are arranged into Direct, Analytical and Descriptive study groupings by color. Torfuscation involves the selection of a study type with a probative power lower down on the chart, when a higher probative level of study was available and/or warranted; as well as in tampering with the PICO-time risk elements (right side of chart under the yellow header) characteristic of each study type so as to weaken its overall ability to indicate a potential disliked outcome. The Chart is followed up by a series of definitions for each study type listed. The myriad sources for this compiled set of industry material are listed at the end of this article – however, it should be noted that the sources cited did not agree with each other on the material/level, structure nor definitions of various study designs. Therefore modifications and selections were made as to the attributes of study, which allowed for the entire set of alternatives/definitions to come into synchrony with each other – with minimal overlap and confusion. So you will not find 100% of this chart replicated inside any single resource or textbook. (note: My past lab experience has been mostly in non-randomized controlled factorial trial study – whose probative successes were fed into a predictive model, then confirmed by single mechanistic lab tests. I found this approach to be highly effective in my past professional work. But that lab protocol may not apply to other types of study challenge and could be misleading if applied as a panacea. Hence the need for the chart below.)

Study Design Type Definitions


Experimental– A study which involves a direct physical test of the material or principal question being asked.

Mechanistic/Lab – A direct study which examines a physical attribute or mechanism inside a controlled closed environment, influencing a single input variable, while observing a single output variable – both related to that attribute or mechanism.

Controlled Trial

Randomized (Randomized Controlled Trial) – A study in which people are allocated at random (by chance alone) to receive one of several clinical interventions. One of these interventions is the standard of comparison or the ‘control’. The control may be a standard practice, a placebo (“sugar pill”), or no intervention at all.

Non-Randomized Controlled Trial – A study in which people are allocated by a discriminating factor (not bias), to receive one of several clinical interventions. One of these interventions is the standard of comparison or the ‘control’. The control may be a standard practice, a placebo (“sugar pill”), or no intervention at all.

Parallel – A type of controlled trial where two groups of treatments, A and B, are given so that one group receives only A while another group receives only B. Other names for this type of study include “between patient” and “non-crossover” studies.

Crossover – A longitudinal direct study in which subjects receive a sequence of different treatments (or exposures). In a randomized controlled trial with repeated measures design, the same measures are collected multiple times for each subject. A crossover trial has a repeated measures design in which each patient is assigned to a sequence of two or more treatments, of which one may either be a standard treatment or a placebo. Nearly all crossover controlled trial studies are designed to have balance, whereby all subjects receive the same number of treatments and participate for the same number of periods. In most crossover trials each subject receives all treatments, in a random order.

Factorial – A factorial study is an experiment whose design consists of two or more factors, each with discrete possible values or ‘levels’, and whose experimental units take on all possible combinations of these levels across all such factors. A full factorial design may also be called a fully-crossed design. Such an experiment allows the investigator to study the effect of each factor on the response variable or outcome, as well as the effects of interactions between factors on the response variable or outcome.

Blind Trial – A trial or experiment in which information about the test is masked (kept) from the participant (single blind) and/or the test administerer (double blind), to reduce or eliminate bias, until after a trial outcome is known.

Open Trial – A type of non-randomized controlled trial in which both the researchers and participants know which treatment is being administered.

Placebo-Control Trial – A study which blindly and randomly allocates similar patients to a control group that receives a placebo and an experimental test group. Therein investigators can ensure that any possible placebo effect will be minimized in the final statistical analysis.

Interventional (Before and After/Interrupted Time Series/Historical Control) – A study in which observations are made before and after the implementation of an intervention, both in a group that receives the intervention and in a control group that does not. A study that uses observations at multiple time points before and after an intervention (the ‘interruption’). The design attempts to detect whether the intervention has had an effect significantly greater than any underlying trend over time.

Adaptive Clinical Trial – A controlled trial that evaluates a medical device or treatment by observing participant outcomes (and possibly other measures, such as side-effects) along a prescribed schedule, and modifying parameters of the trial protocol in accord with those observations. The adaptation process generally continues throughout the trial, as prescribed in the trial protocol. Modifications may include dosage, sample size, drug undergoing trial, patient selection criteria or treatment mix. In some cases, trials have become an ongoing process that regularly adds and drops therapies and patient groups as more information is gained. Importantly, the trial protocol is set before the trial begins; the protocol pre-specifies the adaptation schedule and processes. 

Observational – Analytical

Cohort/Panel (Longitudinal) – A study in which a defined group of people (the cohort – a group of people who share a defining characteristic, typically those who experienced a common event in a selected period) is followed over time, to examine associations between different interventions received and subsequent outcomes.  

Prospective – A cohort study which recruits participants before any intervention and follows them into the future.

Retrospective – A cohort study which identifies subjects from past records describing the interventions received and follows them from the time of those records.

Time-Series – A cohort study which identifies subjects from a particular segment in time following an intervention (which may have also occurred in a time series) and follows them during only the duration of that time segment. Relies upon robust intervention and subject tracking databases. For example, comparing lung health to pollution during a segment in time.

Cross-Sectional/Transverse/Prevalence – A study that collects information on interventions (past or present) and current health outcomes, i.e. restricted to health states, for a group of people at a particular point in time, to examine associations between the outcomes and exposure to interventions.

Case-Control – A study that compares people with a specific outcome of interest (‘cases’) with people from the same source population but without that outcome (‘controls’), to examine the association between the outcome and prior exposure (e.g. having an intervention). This design is particularly useful when the outcome is rare.

Nested Case-Control – A study wherein cases of a health outcome that occur in a defined cohort are identified and, for each, a specified number of matched controls is selected from among those in the cohort who have not developed the health outcome by the time of occurrence in the case. For many research questions, the nested case-control design potentially offers impressive reductions in costs and efforts of data collection and analysis compared with the full case-control or cohort approach, with relatively minor loss in statistical efficiency.

Community Survey – An observational study wherein a targeted cohort or panel is given a set of questions regarding both interventions and observed outcomes over the life or a defined time period of the person, child or other close family member. These are often conducted in conjunction with another disciplined polling process (such as a census or general medical plan survey) so as to reduce statistical design bias or error.

Ecological (Correlational) – A study of risk-modifying factors on health or other outcomes based on populations defined either geographically or temporally. Both risk-modifying factors and outcomes are averaged or are linear regressed for the populations in each geographical or temporal unit and then compared using standard statistical methods.

Observational – Descriptive

Population – A study of a group of individuals taken from the general population who share a common characteristic, such as age, sex, or health condition. This group may be studied for different reasons, such as their response to a drug or risk of getting a disease. 

Case Series – Observations are made on a series of specific individuals, usually all receiving the same intervention, before and after an intervention but with no control group.

Case Report – Observation is made on a specific individual, receiving an intervention, before and after an intervention but with no control group/person other than the general population.


Systematic Review/Objective Meta-Analysis – A method for systematically combining pertinent qualitative and quantitative study data from several selected studies to develop a single conclusion that has greater statistical power. This conclusion is statistically stronger than the analysis of any single study, due to increased numbers of subjects, greater diversity among subjects, or accumulated effects and results. However, researchers must ensure that the quantitative and study design attributes of the contained studies all match, in order to retain and enhance the statistical power entailed. Mixing lesser rigorous or incongruent studies with more rigorous studies will only result in a meta-analysis which bears the statistical power of only a portion of the studies, or of the least rigorous study type contained, in decreasing order along the following general types of study:

Controlled Trial/Mechanism

Interpretive/Abstract ‘Meta-Synthesis’ – A study which surveys the conclusion or abstract of a pool of studies in order to determine the study authors’ conclusions along a particular line of conjecture or deliberation. This may include a priori conclusions or author preferences disclosed inside the abstract of each study, which were not necessarily derived as an outcome of the study itself. This study may tally a ‘best evidence’ subset of studies within the overall survey group, which stand as superior in their representation of the conclusion, methodology undertaken or breadth in addressing the issue at hand.

Editorial/Expert Opinion – A summary article generally citing both scientific outcomes and opinion, issued by an expert within a given field, currently active and engaged in research inside that field. The article may or may not refer to specific examples of studies, which support an opinion that a consilience of evidence points in a given direction regarding an issue of deliberation. The author will typically delineate a circumstance of study outcome, consilience or consensus as separate from their personal professional opinion.

Critical Review/Skeptic Opinion – A self-identified skeptic or science enthusiast, applies a priori thinking with no ex ante accountability, in order to arrive at a conclusion. The reviewer may or may not cite a couple examples or studies to back their conclusion.

Sources: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

     How to MLA cite this article:

The Ethical Skeptic, “Torfuscation – Gaming Study Design to Effect an Outcome”; The Ethical Skeptic, WordPress, 15 Apr 2019; Web,

April 15, 2019 Posted by | Agenda Propaganda, Institutional Mandates, Tradecraft SSkepticism | , , | 2 Comments

Adoy’s Principle – or the Principle of the House Hedge

Penalty systems rarely fail, while reward systems are dispositioned to do so.
With benefits there is no do, only try. Master Yoda is rolling in his Jedi grave. The House which employs this precept has an edge; and as a result, always wins. Adoy’s Principle is both a tactic and strategy of Rent Seekers. When processes are set up such that rewards are at risk, while penalties are guaranteed in their enforcement, this displacement of risk downward and monetary reward upward, is called a House Hedge. It applies to skepticism as well as to the economics of extraction.

My dealings with the Social Security Administration and our Internal Revenue Service, combined of course with my longstanding experience in clashing with fake skeptics, has prompted me to develop a new axiom or principle. Its embodiment relates to a favorite statement of mine made by Master Yoda in the celebrated Star Wars saga episode The Empire Strikes Back. Inside the scene in question, Padawan Luke responds to a request by Master Yoda with the complaint “I’ll try”. To which Mater Yoda responds, “Do, or do not. There is no try.”

This principle of human nature (or foible) can be inverted and extrapolated to stand as a truth inside broader systems of human social structure, which include of course social skeptics and governments. Systems which effect benefit to those at risk, such as the Social Security SSI Disability Administration or other social benefit, ‘try’ to attain their goal. Systems which administer punitive actions, such as the IRS, ‘do’ attain their goals. When have you ever had the IRS mistakenly forget to extract a penalty fee from you over a violation they have detected? Never. How many failure points exist inside an application for a disability benefit under SSI jurisdiction? At least six to eight failure points, all of which are guaranteed to fail to a high degree upon any application for benefit. This is the essence of Adoy’s Principle, or the Principle of the House Hedge. You will notice, that in keeping with not naming my axioms and philosophical principles after myself, I have chosen the name Yoda spelled backwards as the mnemonic for this element of the Tree of Knowledge Obfuscation. But first, let’s take a refresher look at the principle of who benefits: The Rent Seeker.


/philosophy : appeal to authority : exploitation/ : a version of appeal to authority, coined by Nassim Taleb, in which a person derives income simply because they are touted as an authority, or hold a position inside an organization with such authority, or hold a bureaucratic or power influence over the administration of assets/money – drawing unjustly thereof. Under such a model of value chain theory, even the rental of an asset involves some risk – however the principle hinges more around the idea that, for every dollar of compensation an equal and opposite flow of value should be provided. In similar context this is the origin of the statement of ethical skepticism ‘Risk is the leaven of the bread of hard work. Beware of those who’s trade is in neither.”

Adoy’s principle, a corollary to or form of rent seeking, is in effect no different than a casino’s 0.5% to 17% house edge (although in this usage it is technically a hedge, since it involves two unrelated processes with countering influences/effects – making it more akin to the hedge inside an investment fund context).1 The casino wins no matter what happens, even if every game was as fortuitous as black jack, the house will win an average of 5% to 10% because of the agency of process design. Gambler takes are designed to fail; house takes are designed to not fail (or curiously more ethical in the case of the casino, ‘fail less often’). The principle is embodied below.

Adoy’s Principle (House Hedge)

Penalty systems rarely fail, while reward systems are dispositioned to do so.

/philosophy : entropy : suffering/ : (an inversion of Yoda’s axiom in Star Wars, The Empire Strikes Back: “Do, or do not. There is no try.”) – systems which administer punitive actions and/or penalties rarely if ever fail (they ‘do’); while systems which deliver awards and/or benefits often fail or are designed so as to increase the likelihood of failure (they ‘try’). The difference is called a ‘house hedge’. The house hedge is expressed in two ways.
First as the economic inefficiency of extraction by taxation: the taxing body gets to keep the house hedge illegitimately as a defacto program inefficiency.
Second as a feature of club quality: fake skeptics are allowed to deliver condemning dispositions without any scientific rigor, while their victims must produce flawless science in order to negate the easy proclamations of the fake skeptic.

There is No Do, Only Try

Take for example the benefit which is the ‘try’ of the Social Security Administration’s SSI Disability Benefits process versus an IRS ‘do’ tax penalty. Recently I had to file my taxes late because of a delayed overseas income statement. The penalty voucher for that delay, was issued without exception nor delay – as it should. No big deal: $350. I paid it – as just part of the expense of doing difficult business. Many opportunities for the working class have shifted out of the United States and overseas – and the IRS knows that it can make more money in that circumstance. It could care less where you have to go in order to earn the money. It is rent seeking.

However in contrast, my daughter’s cerebrum was crushed during her process of birth. This resulted in birth trauma cerebral palsy and her being permanently disabled. She was found to have a 75% tear (a definitive zig-zagged scar characteristic of this type of injury) through her brain (corpus callosum), on CAT scans subsequent to detecting the entailed cognitive and physical impacts. The scar had resulted from trauma during birth canal compression. It took 3 years after detection, just to get a medical diagnosis and special needs education plan in place, then a further 2 years in order to obtain a final clinical and causal diagnosis. By the time the doctors finally determined the complete degree of magnitude and cause of her cerebral palsy, it was too late to seek relief from the very insurers who are compensated highly to protect victims in such cases. Those insurers actually wrote the law under an Adoy’s Principle. This system of benefit, ostensibly created to offer relief to victims like in the case of my daughter, was purposely designed to fail. Her cost of care? …$2.6 million for lifetime. 

So I work two jobs, take no vacations, drive 10+ year old cars, get my teeth serviced at charity clinics, have had no health insurance for years at a time, and will not be able to retire. I am willing to do all this – but I am not willing to do this so that the lawyer who developed the Adoy’s Principle can sit on his yacht in Nantucket Sound and marvel at how virtuous he was.

This is a visceral example of why it is important that science be held accountable under the public interest – and not reside as the lapdog of corporations and their fake skeptics.

We thereafter fight the battle to get SSI Disability for my daughter, now in her 20’s – the period in which she should have been a taxpaying professional. We have battled for 6 years to get her warranted benefits, unsuccessfully so; ostensibly because she took out an $8,000 loan years ago to try and attend a vocational rehabilitation school. We had not the first inkling that this would disqualify her for disability. The school did not pan out as viable for her because of her mental and physical limitations, and so we immediately repaid the loan back to the bank, continuing her status as financially destitute. But because she had ‘cash’ in her bank account 7 years ago (forget her net worth of $0 before, during and ever since), she is ineligible for disability benefits. This process was ‘designed to fail’ for those whom it was meant to serve. We should have never tried anything and just sat on our asses and waited for a check. Seek reward for being rent seekers ourselves. Instead we were penalized for being ethical Americans. Do you see the pattern developing here? As a society we reward the foibles of deception, disdain and despondence – not aid those who face a bleak future because of their disability. This increase in human suffering comes incumbent with the House Hedge.

We are required to be there for our government, but they do not have to be there when we need them. In fact they design the very process of benefit such that they will not be required to help at all when the need time comes. This is the essence of Adoy’s Principle. It inevitably destroys the very culture it is meant to serve.

Below are the generic comparative risk chains for those three value chain examples I just cited (two ostensible benefit cases – cerebral palsy legal and SSI benefits – versus one IRS penalty example). One could also apply this to the relief to be derived from a vaccine injury, versus the $40 billion in profit reward which flows annually to vaccine manufacturers and their hired ‘skeptics’. The same principle applies therein. Skeptics profit from guaranteed penalizing of stakeholders, who’s incumbent relief is at high risk.

Those who are going to pay you something, will always find an excuse to not have to pay you. But the minute you owe them something, there will be hell to pay if you do not comply immediately. Those who condemn you in the name of science, do so without any course of rigor or scientific ethic; yet at the same time will demand unattainably flawless science as the requirement for release from the prison of their crafting.

Both entities are rent seekers. The skeptic who practices such rent seeking is pretending to the role of government and god.

     How to MLA cite this article:

The Ethical Skeptic, “Adoy’s Principle – or the Principle of the House Hedge”; The Ethical Skeptic, WordPress, 25 Feb 2019; Web,


February 25, 2019 Posted by | Institutional Mandates | Leave a comment

The Hermit of Nosnix Who Couldn’t be Fooled

This Holiday message from me. When in an effort to see that no one is fooled, you cede control authority to one who cannot be fooled – then everyone ends up being fooled. The Debbles of Doubthill are the pseudosciences, topics so feared by skeptics that we all lose in their mad rush to obfuscate and squelch them. Most Debbles are dispelled in their facing, and not in their avoidance.
A persistence of blindness who’s lesson’s quite cruel
The worst form of idiot thinks he cannot be fooled.

by Theodor Eric Seussel

A planner of trestles and layer of tracks
Purveyor of cartniks with plumthings on their backs,
The Who’s of Fair Pluntkin fully decked out in auld
Could barely scarce function without things which he hauled.
His hovel not cluttered his mind like Straight Lane
His cartniks lined up to shuttle plumthings again,
For short were his musings and so scarce were his lacks
That the Who’s of Fair Pluntkin did cede him their tracks.
Come spring summer’s fresh offing or winter’s cold somethings
No Debble of Doubthill would delay their dear plumthings,
Cartniks would arrive here and then sometimes there
The Who’s of Fair Pluntkin just didn’t care where.
Who’s knew that from Kesnig and Pennington to Kuled
They were the Hermit of Nosnix’s who couldn’t be fooled.
When an idea arose in the talk of Fair Pluntkin
‘Why don’t we go looking for quazlots and buntpins?’
Such cans of rare ore good were legend of old
More precious than silver, fine jewelry or gold.
They setout a plan to build trackway and charter
And bade their tough Hermit to sit down and barter,
But he could not be bought and he would not be schooled
For he was the Hermit of Nosnix and nobody’s fool.
Thus did they cajole him and call him by name
Offering up plumthings and palace and fame,
‘Lay us the tracks there and we’ll run cartnik cans
The Debbles of Doubthill won’t thwart any such plans!’
But staid in his knowledge of their trestles and tracks,
He vowed to confuse cartniks with cans on their backs!
Quazlots and buntpins were foolish men’s mirth
Of fleeting sheer fantasy in essence and worth;
Such trackways to Debbles should never be tooled
I am the Hermit of Nosnix and I cannot be fooled!
So each newly laid line of steel and proud skill
He plotted curve ’round all Debbles of Doubthill;
For whether tracks stopped there or ran ’round their threat
In either case ran no cartnik cans yet!
Year after year Who’s laid out Who plans
To find Debbles of Doubhill had blocked all their cans!
The curves he laid toward them only bent ’round again
To meetup with tracks from once which they came!
So hated he quazlots and buntpins and mirth
That he wouldn’t lay tracks there no matter their worth!
In the town of Fair Pluntkin from Debbles protected
Each winter of somethings Who’s grew more dejected.
T’was cynicism which blocked them and left them to rot
Because quazlots were real and Debbles were not!
A persistence of blindness who’s lesson’s quite cruel
The worst form of idiot thinks he cannot be fooled.
Thus the Who’s of Fair Pluntkin had all left astray
Leaving cartnik’s tracks rusting away where they lay;
While Fair Kesnig and Pennington had taken their outfill
Because they didn’t believe in Debbles of Doubthill.
Come spring summer’s fresh offing or winter’s cold somethings
The town of Fair Pluntkin had run out of dear plumthings,
All Who’s had been duped who lived Kesnig to Kuled
By the Hermit of Nosnix who couldn’t be fooled.

Merry Christmas and Happy Holidays.

     How to MLA cite this article:

The Ethical Skeptic, “The Hermit of Nosnix Who Couldn’t be Fooled”; The Ethical Skeptic, WordPress, 16 Dec 2018; Web,


December 16, 2018 Posted by | Institutional Mandates, Tradecraft SSkepticism | , | Leave a comment

Chinese (Simplified)EnglishFrenchGermanHindiPortugueseRussianSpanish
%d bloggers like this: